×

关注微信公众号

DNV 技术进展报告 | 绿氢生产的4大技术和未来面临的主要挑战

2022-1-23 19:09| 发布者: admin| 查看: 522| 评论: 0|来自: 公众号:海洋清洁能源资讯

摘要: 前言氢能经济正处在上升阶段,DNV 预计全球对以氢作为能量载体的需求将从 2019 年的几乎为零增长到 2050 年的 24 EJ/年。发展将主要集中在制造和运输行业,这将增加氢的持续非能源使用,如化肥和原料。DNV发布的 ETO ...

前言

氢能经济正处在上升阶段,DNV 预计全球对以氢作为能量载体的需求将从 2019 年的几乎为零增长到 2050 年的 24 EJ/年。发展将主要集中在制造和运输行业,这将增加氢的持续非能源使用,如化肥和原料。DNV发布的 ETO 2021 包括影响氢使用的碳价格敏感性,这将导致需求进一步增加。



氢气是如何生产制造的?


绿氢是通过电解作用生产的。在基本层面上,电解通过施加电流将水 (H2O) 分解为氢气 (H2 ) 和氧气 (O2 )。下文将概括四种主要的生产绿氢的技术,DNV 参与了许多应用这类技术的项目,并与制造商保持联系,以了解最新发展动向。

为了满足日益增长的制氢需求,需要前所未有的产能升级,包括棕氢、灰氢、蓝氢或绿氢生产。尽管 所有 “颜色”都将在未来发挥作用,但归根结底,绿氢是最具可持续性且真正无碳的选择。此外,绿氢还将支持可再生能源的商业案例。大规模电解可在生产过剩期间以及电池储能、抽水蓄能 和需求侧管理期间为平衡电力市场起到重要的支持作用(其特征通常是价格较低或接近于零)。
 
  

1

//  碱电解 (AE)


AE 是最成熟的电解技术,在20 世纪被广泛应用于利用水力发电生产氨气和化肥。AE 的主要特点是使用混合氢氧化钾 (KOH) 的液体电解质来提高电导率。常压碱电解是最常见的形式,系统在常压条件下运行并产生氢气。还有氢气输出压力小于40 bar 的增压系统。许多应用需要增压氢气,与使用压缩机相比,更高的输出压力可节省成本和能源。增压碱电解还可更好地响应功率输入的变化(例如,来自可再生能源)。但这些好处的代价是效率略低,设计和维护更具挑战性。
 

2

//  质子交换膜(PEM)


最早的 PEM 电解槽用于潜艇制氧,但从本世纪初开始,它们就被用于生产商用氢气。PEM的特点是其固体电解质(膜)和快速响应时间,而且通常是增压的。虽然还不太成熟,但这项技术已取得很大的进步,并逐渐趋于成熟。成本大约比 AE高 30%,但效率相当。预计电堆寿命也将达到与 AE 类似的水平 (70000-80000 小时),而且随着系统达到 60000 小时,接近于实现这一目标;PEM 已经以兆瓦规模部署,加拿大最大的制氢厂为 20 MW。
 

3

//  固体氧化物电解 (SOE)


SOE 已经实现商业化,近期的投资导致市场竞争加剧和产能升级。这项技术主要因工作温度高 (500-900oC)、效率高以及使用蒸汽代替液态水而受到认可。这项技术已商用,但在规模和成熟度上仍远远落后于 AE 和 PEM。电 堆 寿命 仍限制 在 20000 小时以内,并且需要降低成本才能与 AE 和 PEM 竞争。此外,电堆容量仍然只有几千瓦,而 AE 和 PEM 超过 1 MW。

SOE 的一个独特优势是,它能够使用蒸汽和 CO2 的共电解直 接形成合成气,并通过蒸汽和空气的共电解生成氢气和氮气的混合物。后者与氨气生产相结合很有优势,既节省了空分装置的制氮成本,又可利用余热生产蒸汽。SOE 还可反向运行,充当燃料电池。
 

4

//  阴离子交换膜 (AEM)


最不成熟的技术是 AEM,其仍处在研发阶段。系统在商业上可用,但只有 2.4 kW。这与生产氢气作为能量载体或原料所需的兆瓦级相差甚远。这项技术看起来很有前景,因为它与 PEM有着相似的简单设计,但不需要重要原材料。主要问题是不稳定和寿命有限。到目前为止,测试仅超过 2000 小时,就显示出高度退化。一些改进可能会使寿命达到 5000 小时,但这是以降低效率为代价的。


技术发展趋势


可以说,AE 由于其相对成熟不会有更多的发展。但该项技术有着悠久的历史,能源转型可能会为其注入新的发展动力,其产能将会大幅增加,因为 AE 必须跟上其他新兴技术的步伐,尤其是 PEM。

这两种技术都处于性能优化阶段,重点关注效率、寿命和成本。虽然优化其中一个参数通常以牺牲其他参数为代价,但目标是降低氢气的平均成本 (LCOH)。我们的分析表明,LCOH 的主要驱动因素是电力消耗、投资成本和电堆退化。因此,制造商关注 这三个方面也就不足为奇了。

  • 对于 AE 和 PEM,更薄的膜可减少内阻,从而提高效率。更高的工作温度也可提高效率。

  • 改善工厂设备平衡——供应电力、水和处理气体的设备将进 一步提高效率

  • 降低成本,方法是扩大容量。预计接近吉瓦级的电解厂将 实现规模经济。

  • 升级、标准化和改进制造工艺将进一步降低成本。组装目前 是手动完成的,但可通过标准化的系统设计和产能升级实现 自动化。

  • 进一步的改进包括将增压碱电解和 PEM 的工作压力增加到 70bar。

 
在 AE 和 PEM 争夺商业地位的同时,SOE 已通过三家制造商 进入市场。SOE 的发展主要集中在提高电堆的稳定性和寿命、 扩大容量和降 低成本。电堆应通过尽可能减少热循环和避免 二氧化硅等导致电极堵塞的杂质来提高寿命。通过增加电池面积、电池数量和电流密度,也可获得更高的容量。从理论上讲, 制造 >1 MW 的电堆不应存在重大障碍,与如今 <10 kW 的电堆相比增长显著。最后,仅在规模经济的基础上,成本预计将降低50%。到 2030 年,这将使 SOE 能够与 AE 和 PEM 竞争。

AEM 仍然需要最大程度的发展。该系统目前可商用,但规模太小,不具备商业可行性。在开始与其他电解技术竞争之前,还需要大幅提高电堆寿命。因此,重点是获得稳定的膜,这目前限制了电堆寿命。

12下一页
2

路过

雷人

握手
1

鲜花

鸡蛋

刚表态过的朋友 (3 人)

返回顶部